The q-harmonic oscillator and an analogue of the Charlier polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L693
(http://iopscience.iop.org/0305-4470/26/15/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 19:02

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The q-harmonic oscillator and an analogue of the Charlier polynomials

R Askey \dagger and S K Suslov \ddagger
\dagger Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA
\ddagger Russian Scientific Center 'Kurchatov Institute', Moscow 123182, Russia

Received 8 April 1993

Abstract

A model of a q-harmonic oscillator based on q-Charlier polynomials of Al-Salam and Carlitz is discussed. 'A simple explicit realization of q-creation and q-annihilation operators, q-coherent states and an analogue of the Fourier transformation are found. A connection of the kemel of this transfom with biorthogonal rational functions is observed.

Models of q-harmonic oscillators are being developed in connection with quantum groups and their various applications (see, for example, [1-5]). The q-analogues of boson operators have been introduced explicitly in $[1,3,5]$, where the corresponding wavefunctions were found in terms of the Rogers-Szegö polynomials [6], in terms of the continuous q-Hermite polynomials of Rogers [7,8] and the Stieltjes-Wigert polynomials [9, 10], respectively. Here we introduce one more explicit realization of q-creation and q-annihilation operators with the aid of q-Charlier polynomials of Al-Salam and Carlitz [11].

The q-orthogonal polynomials $V_{n}^{a}(x ; q)$ studied by Al-Salam and Carlitz may be considered as a q-version of the Charlier polynomials $c_{n}^{\mu}(s)$ (see, for example, [12,13]). To emphasize this analogy we use the notation $v_{n}^{\mu}(x ; q)$ for the Al-Salam and Carlitz polynomials. In our notation they can be defined by the three-term recurrence relation
$\mu q^{-n-1} v_{n+1}^{\mu}(x ; q)+\left(1-q^{n}\right) q^{-n} v_{n-1}^{\mu}(x ; q)=\left((\mu+q) q^{-n-1}-x\right) v_{n}^{\mu}(x ; q)$
with $v_{0}^{\mu}(x ; q)=1, v_{1}^{\mu}(x ; q)=\mu^{-1}(\mu+q-q x)$. These polynomials are orthogonal:

$$
\begin{equation*}
\sum_{s=0}^{\infty} v_{m}^{\mu}\left(q^{-s} ; q\right) v_{n}^{\mu}\left(q^{-s} ; q\right) \rho(s) q^{-s}=\frac{(q ; q)_{n}}{\mu^{n}} \delta_{m n} \tag{2}
\end{equation*}
$$

with respect to a positive measure

$$
\begin{equation*}
\rho(s)=(\mu ; q)_{\infty} \frac{\mu^{s} q^{s^{2}}}{(q, \mu ; q)_{s}} \quad 0<\mu, q<1 \tag{3}
\end{equation*}
$$

where the usual notations (see [14]) are

$$
\begin{equation*}
(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right) \quad(a, b ; q)_{n}=(a ; q)_{n}(b ; q)_{n} \quad(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n} \tag{4}
\end{equation*}
$$

The weight function (3) is a solution of the Pearson equation $\Delta(\sigma \rho)=\rho \tau \nabla x_{1}$ (here $\Delta f(s)=\nabla f(s+1)=f(s+1)-f(s)$ and $x_{1}(s)=x\left(s+\frac{1}{2}\right)$; for details, see $\left.[13,15]\right)$ with $x(s)=q^{-s}, \sigma(s)=\left(1-q^{-s}\right)\left(\mu-q^{1-s}\right)$ and $\sigma(s)+\tau(s) \nabla x_{1}(s)=\mu$. The explicit form of the polynomials $v_{n}^{\mu}(x ; q)$ is

$$
\begin{equation*}
v_{n}^{\mu}(x ; q)=2 \varphi_{0}\left(q^{-n}, x ;-; q, q^{1+n} / \mu\right), x=q^{-s} \tag{5}
\end{equation*}
$$

For the definition of the basic hypergeometric function $2 \varphi_{0}$, see [14]. In the limit $q \rightarrow 1$ it easy to obtain from (1) or (5)

$$
\begin{equation*}
\lim _{q \rightarrow \mathrm{~L}} v_{n}^{(1-q) \mu}\left(q^{-s} ; q\right)={ }_{2} F_{0}(-n,-s ;-;-1 / \mu)=c_{n}^{\mu}(s) \tag{6}
\end{equation*}
$$

This justifies our notation for the Al-Salam and Cariitz polynomials.
The polynomials $v_{\pi}^{\mu}(x ; q)$ give us the possibility to introduce a new model of a q oscillator. We can define a q-version of the wavefunctions of harmonic oscillator as

$$
\begin{equation*}
\psi_{n}(s)=d_{n}^{-1} q^{-s / 2} \rho^{1 / 2}(s) v_{n}^{\mu}\left(q^{-s} ; q\right) \tag{7}
\end{equation*}
$$

where $d_{n}^{2}=(q ; q)_{n} / \mu^{n}$. These q-wavefunctions satisfy the orthogonality relation

$$
\begin{equation*}
\sum_{s=0}^{\infty} \psi_{n}(s) \psi_{m}(s)=\delta_{n m} \tag{8}
\end{equation*}
$$

The q-annihilation a and q-creation a^{+}operators have the following explicit form:

$$
\begin{align*}
& a=(1-q)^{-1 / 2}\left[\mu^{1 / 2} q^{s}-\sqrt{\left(1-q^{s+1}\right)\left(1-\mu q^{s}\right)} \mathrm{e}^{\partial,}\right] \\
& a^{+}=(1-q)^{-1 / 2}\left[\mu^{1 / 2} q^{s}-\mathrm{e}^{-\partial_{s}} \sqrt{\left(1-q^{s+1}\right)\left(1-\mu q^{s}\right)}\right] \tag{9}
\end{align*}
$$

where $\partial_{s} \equiv \mathrm{~d} / \mathrm{d} s, \mathrm{e}^{\alpha \partial_{s}} f(s)=f(s+\alpha)$. These operators are adjoint, $\left(a^{+} \psi, \chi\right)=(\psi, a \chi)$, with respect to the scalar product (8). They satisfy the q-commutation rule

$$
\begin{equation*}
a a^{+}-q a^{+} a=1 \tag{10}
\end{equation*}
$$

and act on the q-wavefunctions defined in (7) by

$$
\begin{equation*}
a \psi_{n}=e_{n}^{1 / 2} \psi_{n-1} \quad a^{+} \psi_{n}=e_{n+1}^{1 / 2} \psi_{n+1} \tag{11}
\end{equation*}
$$

where

$$
e_{n}=\frac{1-q^{n}}{1-q}
$$

In this model of the q-oscillator, equations (11) are equivalent to the following differencedifferentiation formulae:
$\mu q^{s} \Delta v_{n}^{\mu}(x ; q)=\left(q^{n}-1\right) v_{n-1}^{\mu}(x ; q) \quad q^{s} \nabla\left[\rho(s) v_{n}^{\mu}(x ; q)\right]=\rho(s) v_{n+1}^{\mu}(x ; q)$
respectively. In view of (6) the functions $\psi_{n}(s)$ converge in the limit $q \rightarrow 1^{-}$to the wavefunctions of the discrete model of the linear harmonic oscillator considered in [16].

The q-Hamiltonian $H=a^{+} a$ acts on the wavefunctions (7) as

$$
\begin{equation*}
H \psi_{n}=e_{n} \psi_{n} \tag{12}
\end{equation*}
$$

and has the following explicit form:

$$
\begin{align*}
H=(1-q)^{-1} & {\left[\mu q^{2 s}+\left(1-q^{s}\right)\left(1-\mu q^{s-1}\right)-\mu^{1 / 2} q^{s} \sqrt{\left(1-q^{s+1}\right)\left(1-\mu q^{s}\right)} \mathrm{e}^{\partial_{s}}\right.} \\
& \left.-\mu^{1 / 2} q^{s-1} \sqrt{\left(1-q^{s}\right)\left(1-\mu q^{s-1}\right.} \mathrm{e}^{-\delta_{s}}\right] \tag{13}
\end{align*}
$$

By factorizing the Hamiltonian (or the difference equation for the Al-Salam and Carlitz polynomials) we arrive at the explicit form (9) for the q-boson operators.

Since $a^{+} a=H$, the relation (10) can be written in the equivalent form

$$
\begin{equation*}
\left[a, a^{+}\right]=1-(1-q) H \equiv q^{N} \tag{14}
\end{equation*}
$$

The operator

$$
\begin{equation*}
N=\frac{1}{\log q} \log [1-(1-q) H] \tag{15}
\end{equation*}
$$

can be considered as the number operator, since

$$
\begin{equation*}
[a, N]=a \quad\left[N, a^{+}\right]=a^{+} \tag{16}
\end{equation*}
$$

From these relations one can obtain the equations (11) and the spectrum (12) of the q Hamiltonian in abstract form. The q-wavefunctions are

$$
\psi_{n}(s)=c_{n}\left(a^{+}\right)^{n} \psi_{0}(s) \quad a \psi_{0}(s)=0
$$

where $c_{n}=\left(e_{n}!\right)^{-1 / 2}$ and $e_{n}!=e_{1} e_{2} \ldots e_{n}$.
For the model of the q-oscillator under discussion we can construct explicitly q-coherent states and an analogue of the Fourier transformation. For the coherent states $|\alpha\rangle$ defined by

$$
\begin{align*}
& a|\alpha\rangle=\alpha|\alpha\rangle \quad\langle\alpha \mid \alpha\rangle=1 \\
& |\alpha\rangle=f_{\alpha} \sum_{n=0}^{\infty} \frac{\alpha^{n} \psi_{n}(s)}{\left(e_{n}!\right)^{1 / 2}} \tag{17}\\
& f_{\alpha}=\left((1-q)|\alpha|^{2} ; q\right)_{\infty}^{1 / 2} \quad(1-q)|\alpha|^{2}<1
\end{align*}
$$

we can write

$$
\begin{equation*}
|\alpha\rangle=f_{\alpha}\left(\rho q^{-s}\right)^{1 / 2} \sum_{n=0}^{\infty} \frac{t^{n}}{(q ; q)_{n}} v_{n}^{\mu}(x ; q), t=\alpha \mu^{1 / 2}(1-q)^{1 / 2} \tag{18}
\end{equation*}
$$

With the aid of the generating function [11]
$\sum_{n=0}^{\infty} \frac{t^{n}}{(q ; q)_{n}} v_{n}^{\mu}(x ; q)=\frac{(q t x / \mu ; q)_{\infty}^{\infty}}{(t, q t / \mu ; q)_{\infty}^{\infty}} \quad|t|<1 \quad|q t / \mu|<1$
we arrive at the following explicit form for the q-coherent states:

$$
\begin{equation*}
|\alpha\rangle=f_{\alpha}\left(\rho q^{-s}\right)^{1 / 2} \frac{\left(\alpha(1-q)^{1 / 2} \mu^{-1 / 2} q^{1-s} ; q\right)_{\infty}}{\left(\alpha(1-q)^{1 / 2} \mu^{1 / 2}, \alpha q(1-q)^{1 / 2} \mu^{-1 / 2} ; q\right)_{\infty}} \tag{20}
\end{equation*}
$$

where $\rho=(q ; q)_{\infty}^{-1}\left(q^{s+1}, \mu q^{s} ; q\right)_{\infty} \mu^{s} q^{s^{2}}$. These coherent states are not orthogonal:

$$
\langle\alpha \mid \beta\rangle=\frac{\left((1-q)|\alpha|^{2},(1-q)|\beta|^{2} ; q\right)_{\infty}^{1 / 2}}{\left((1-q) \alpha^{*} \beta ; q\right)_{\infty}}
$$

where $*$ denotes the complex conjugate.
To define an analogue of the Fourier transform we can consider, following Wiener's approach to the classical Fourier transform [17] (see also [18, 19]), the kernel of the form

$$
\begin{align*}
K_{t}(s, p)= & \sum_{n=0}^{\infty} t^{n} \psi_{n}(s) \psi_{n}(p) \\
& =\left(\rho(s) \rho(p) q^{-s-p}\right)^{1 / 2} \sum_{n=0}^{\infty} \frac{(\mu t)^{n}}{(q ; q)_{n}} v_{n}^{\mu}\left(q^{-s} ; q\right) v_{n}^{\mu}\left(q^{-p} ; q\right) \tag{21}
\end{align*}
$$

The series can be summed with the aid of the bilinear generating function by AI-Salam and Carlitz [11]:

$$
\begin{gather*}
\sum_{n=0}^{\infty} v_{n}^{\mu_{1}}(x ; q) v_{n}^{\mu_{2}}(\bar{y} ; q) \frac{t^{n}}{(q ; q)_{n}}=\frac{\left(q t x / \mu_{1}, q t y / \mu_{2} ; q\right)_{\infty}}{\left(t, q t / \mu_{1}, q t / \mu_{2} ; q\right)_{\infty}} \\
\times{ }_{3} \varphi_{2}\left(\begin{array}{c}
x, y, t \\
q t x / \mu_{1}, q t y / \mu_{2}
\end{array} ; q, \frac{q^{2} t}{\mu_{1} \mu_{2}}\right) . \tag{22}
\end{gather*}
$$

The answer is

$$
K_{t}(s, p)=\left(\rho(s) \rho(p) q^{-s-p}\right)^{1 / 2} \frac{\left(t q^{1-s}, t q^{1-p} ; q\right)_{\infty}}{(q t, q t, \mu t ; q)_{\infty}} 3 \varphi_{2}\left(\begin{array}{l}
q^{-s}, q^{-p}, \mu t \tag{23}\\
t q^{1-s}, t q^{1-p}
\end{array} q, \frac{q^{2} t}{\mu}\right)
$$

The q-wavefunctions (7) are eigenfunctions of the 'discrete q-Fourier transform'

$$
\begin{equation*}
\mathrm{i}^{m} \psi_{m}(s)=\sum_{p=0}^{\infty} K_{i}(s, p) \psi_{m}(p) \tag{24}
\end{equation*}
$$

The orthogonality relation of the kemel

$$
\begin{equation*}
\sum_{p=0}^{\infty} K_{i}(s, p) K_{i}^{*}\left(s^{\prime}, p\right)=\delta_{s s^{\prime}} \tag{25}
\end{equation*}
$$

implies the orthogonality of the rational functions (23) and results in an inversion formula for the transformation:

$$
\begin{equation*}
\psi(s)=\sum_{p=0}^{\infty} K_{i}(s, p) \varphi(p)=F_{q}[\varphi](s) . \tag{26}
\end{equation*}
$$

The kernel (23) of this q-Fourier transform is an eigenfunction of the following 'momentum' and 'position' operators:

$$
\begin{align*}
& P=(\mu+q) q^{-1-N}+\mathrm{i} \sqrt{\mu(1-q)}\left(a q^{-N}-q^{-N} a^{+}\right) \tag{27}\\
& Q=(\mu+q) q^{-1-N}-\sqrt{\mu(1-q)}\left(a q^{-N}+q^{-N} a^{+}\right)
\end{align*}
$$

namely

$$
\begin{equation*}
Q_{s} K_{i}(s, p)=q^{-s} K_{i}(s, p) \quad P_{s} K_{i}(s, p)=q^{-p} K_{i}(s, p) . \tag{28}
\end{equation*}
$$

Equations
$P_{s} F_{q}[\varphi](s)=F_{q}\left[q^{-p} \varphi\right](s) \quad F_{q}^{-1}\left[P_{p} \varphi\right](s)=q^{-s} F_{q}^{-1}[\varphi](s)$
are analogues of the well known properties of the classical Fourier transform (cf [19]). In view of (6) in the limit $q \rightarrow 1^{-}$we get one of the 'discrete Fourier transforms' considered in [18].

Similarly, with the aid of the bilinear generating function (22) and the orthogonality property of the Wall polynomials [14], which are dual to the polynomials (5), one can obtain the biorthogonality relation

$$
\begin{equation*}
\sum_{s=0}^{\infty} u_{m}(s) v_{n}(s) \rho(s) q^{-s}=d_{n}^{2} \delta_{m n} \tag{30}
\end{equation*}
$$

with

$$
\rho(s)=\frac{\left(\mu_{2} / t_{1}, \mu_{2} / t_{2} ; q\right)_{s}}{\left(q, \mu_{2} ; q\right)_{s}} \mu_{1}^{s} q^{s}
$$

and

$$
d_{n}^{2}=\frac{\left(t_{1}, t_{2} ; q\right)_{\infty}}{\left(\mu_{1}, \mu_{2} ; q\right)_{\infty}} \frac{\left(q, \mu_{1} ; q\right)_{n}}{\left(\mu_{1} / t_{1}, \mu_{1} / t_{2} ; q\right)_{n}} \mu_{2}^{-n}
$$

for the ${ }_{3} \varphi_{2}$-rational functions of the form

$$
\begin{align*}
& u_{m}(s)=3 \varphi_{2}\binom{q^{-m}, q^{-s}, t_{1}}{\frac{t_{1}}{\mu_{1}} q^{1-m}, \frac{t_{1}}{\mu_{2}} q^{1-s} ; q, \frac{q^{2}}{t_{2}}} \tag{31}\\
& v_{n}(s)=\left.u_{n}(s)\right|_{t_{1} \rightarrow t_{2}} \quad t_{1} t_{2}=\mu_{1} \mu_{2}
\end{align*}
$$

These functions are self-dual. They belong to classical biorthogonal rational functions [20,21].

We have considered here the explicit form of q-boson operators which satisfy the commutation rule (10) when $0<q<1$. The case $q>1$ is also interesting. It leads to another family of the Al-Salam and Carlitz polynomials [22].

For the models of the q-oscillator under discussion one can readily construct dynamical symmetry group $S U_{q}(1,1)$ [4] and write explicitly irreducible representations $|j, m\rangle_{q}=$ $\psi_{j+m}(s) \psi_{j-m}\left(s^{\prime}\right)$ of the group $S U_{q}(2)[1,2]$.

References

[1] Macfarlane A J 1989 J. Phys. A: Math. Gen. $224581-8$
[2] Biedenham L C 1989 J. Phys. A: Math. Gen. 22 L873-8
[3] Atakishiyev N M and Suslov S K 1990 Teor. Mat. Fiz. 85 64-73
[4] Kulish P P and Damaskinsky E V 1990 J. Phys. A: Math. Gen. 23 LA15-9
[5] Atakishiyev N M and Suslov S K 1991 Teor. Mat. Fiz. 87 154-6
[6] Szegö G 1982 Collected Papers vol 1 ed R Askey (Basel: Birkhäuser) p 795
[7] Rogers L J 1894 Proc. London Math. Soc. 25 318-43
[8] Askey R and Ismail M E H 1983 Studies in Pure Mathematics ed P Erdös (Boston, MA: Birkhäuser) pp 55-78
[9] Stieltjes T J 1894 Recherches sur les fractions continues Annales de la Faculté des Sciences de Toulouse 8 122; 1895 Annales de la Faculté des Sciences de Toulouse 947 (Reprinted in Oeurves Complétes vol 2)
[10] Wigent S 1923 Ark. Mat. Astron. Fys. 17 1-15
[11] Al-Salam W A and Carlitz L 1965 Math. Nachr. 30 47-61
[12] Chihara T S 1978 An Introduction to Orthogonal Polynomials (New York: Gordon and Breach)
[13] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable (Berlin: Springer)
[14] Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)
[15] Suslov S K 1989 Russian Mathematical Surveys London Math. Soc. 44 227-78
[16] Atakishiyev N M and Suslov S K 1989 A model of the hamonic oscillator on the lattice Contemporary Group Analysis: Methods and Applications (Baku) pp 17-21 (in Russian)
[17] Wiener N 1933 The Fourier Integral and Certain of Its Applications (Cambridge: Cambridge University Press)
[18] Askey R, Atakishiyev N M and Suslov S K Fourier transformations for difference analogs of the harmonic oscillator, to appear
[19] Askey R, Atakishiyev N M and Suslov S K 1993 An analog of the Fourier transformations for a q-harmonic oscillator Preprint 5611/1, Kurchatov Institute, Moscow
[20] Wilson J A 1991 SIAM J. Math. Anal. 22 1147-55
[21] Rahman M and Suslov S K 1993 Classical biorthogonal rational functions Preprint 5614/1, Kurchatov Institute, Moscow; 1993 Methods of Approximation Theory in Complex Analysis and Mathematical Physics (Lecture Notes in Mathematics 1550) ed A A Gonchar and E B Saff (Berlin: Springer) p 131-46
[22] Askey R and Suslov S K, The q-harmonic oscillator and the Al-Salam and Carlitz polynomials Lett. Math. Phys. submitted

