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LETTER TO THE EDITOR 

The q-harmonic oscillator and an analogue of the Charlier 
polynomials 

R Askey+ and S K Suslov$ 
t Depamnent of Mathematics. University of Wirmiin.  Madisoq WI 53706, USA 
3 Russian Scientific Center 'Kurchatov Institute'. Moscow 12318g Russia 

Received 8 April 1993 

Abstrad A male1 of a 9-harmonic osdllator based on 9-Charlier plpomialri of AlSalam 
and Carlitz is discussed.'A simple explicit realization of qcnatian and 9-umihil2&2 aperaton, 
9-coherent states and an analogue of the Fourier transformation M found. A e m d o n  of the 
kemel of &is transform with biorthogonal ratimal functiaos is obsewcd 

Models of q-harmonic oscillators are king developed in connection with quantum groups 
and their various applications (see, for example, 11-51). The q-analogues of boson operators 
have been introduced explicitly in [1,3,5], where the corresponding wavefunctions we= 
found in terms of the RogersSzega polynomials [6], in  terms of the continuous q-Hermite 
polynomials of Rogers 17.81 and the Stieltjes-Wtgert polynomials 19,101, respectively. Here 
we inaoduce one more explicit realization of q-creation and q-annihilation operators with 
the aid of q-Charlier polynomials of AI-Salam and Carlitz [lll. 

The q-orthogonal polynomials V:(x ;q )  studied by AI-Salam and Carlitz may be 
considered as a q-version of the Charlier polynomials &(s) (see, for example, [12,131). 
To emphasize this analogy we use the notation $(x; q)  for the AI-Salam and Carlitz 
polynomials. In our notation they can be defined by the three-term recurrence relation 

CLq-n-lu:+l(X; 4)  + (1 - qn) q-"v:-,(x; 4) = ((w + q)q-"-I - x )  v:(x; 4) (1) 

with $(x; q)  = 1, U;(.; q)  = p-I(p + q - qx) .  These polynomials are orthogonal: 

with respect to a positive measure 

where the usual notations (see [14]) are 
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The weight function (3) is a solution of the Pearson equation A(op) = pzVx, (kre 
Af(s) =Vf(s+l)=f(s+l)-ff(s)andxI(s) =x(s+~);fordetails,see[13,15])with 
x(s )  = q-', u(s) = (1 - q T p  - ql-") and u(s) + t(s)Vxl(s) = p. The explicit fonn 
of the polynomials u f ( x ;  q)  is 

u,"(x; 4) =2 %W", x ;  -; 4. ql+"/l.L), x = cp. (3 

For the definition of the basic hypergeometric function 2%, see [14]. In the limit q 3 1 it 
easy to obtain from (1) or (S) 

Lim vj""(q-'; q) = zFo(-n, -s; -; -1/p) = e(,). (6) 
q+l 

This justifies our notation for the Al&alam and Carlitz polynomials. 

oscillator. We can define a q-version ofthe wavefunctions of harmonic oscillator as 
The polynomials u,"(x; q) give us the possibiiity to introduce a new model of a q- 

rlr.(s) = d;1q-s/2p1/2(s) u:(q-'; q) (7) 

where d,' = (4; q ) J j f .  These q-wavefunctions satisfy the orthogonality relation 

S=O 

The q-annihilation a and q-creafion a+ operators have the following explicit form: 

a = (1 - q)-'12 p112qs - J( 1 - qs+l)(l - pqJ) ea* 1 
1 

[ 

where 3, = d/ds, PaSf(s) = f(s + a). These operaton are adjoint, (a++, x) = ($ ,ax) ,  
with respect to the scalar product (8). They satisfy the q-commutation d e  

aa+ - qa+a = 1 (10) 

and act on the q-wavefunctions defined in (7) by 

lI2 (11) a h  = e!/2@n-1 a+@" = e,+l@n+l 

where 

1 - q" 
1 - q  

e.=-. 
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respectively. In view of (6) the functions en($) converge in the limit q + 1- to the 
wavefunctions of the discrete model of the hear harmonic oscillator considered in 1161. 

The q-Hamilfonian H = a+a acts on the wavefunctions (7) as 

H h  =enen (12) 

and has the following explicit form: 

By factorizing the Hamiltonian (or the difference equation for the Al-Salam and Cartitz 
polynomials) we arrive at the explicit form (9) for the q-boson operators. 

Since a+a = H .  the relation (10) can be written in the equivalent form 

(14) [a,a+l = 1 - (1 - q ) H  = q  N . 

The operator 

1 
1% 4 

N = - log[l - ( 1  - q ) H ]  

can be considered as the number operator, since 

[a, NI = a [N, a+] =a+.  (16) 

From these relations one can obtain the equations (11) and the spectrum (12) of the q- 
Hamiltonian in abstract form. The q-wavefunctions are 

@ A s )  = C" (a')" e&) a I l r O O )  = 0 

where c,, = (en!)-lI2 and e.! = eiez. .  . e.. 
For the model of the q-oscillator under discussion we can consfnict explicitly q-coherenr 

stares and an analogue of the Fourier transformation. For the coherent states I a) defined 
by 

a 1 a) = a  1 a)  (a 1 a) = 1 

we can write 
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With the aid of the generating function [ll] 

we anive at the following explicifform for the q-coherent states: 

where p = (q ;  q); I (q S+l . pqs; q)mfisqS1. These coherent slates are not orthogonal: 

where * denotes the complex conjugate. 

approach to the classical Fourier transform [171 (see also [18,19]), the kernel of the form 
To define an analogue of the Fourier fransform we can consider, following Wiener's 

The series can be summed with the aid of the bilinear generating function by AISalam and 
carlitz [l 11: 

The answer is 

The q-wavefunctions (7) are eigenfuncuons of the 'discrete ¶-Fourier transform' 
m 
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implies the orthogonality of the rational functions (23) and results in an inversion formula 
for the transformation: 

W 

*(S) = K ( S ,  P) V ( P )  = F,tVl(S). (26) 

The kemel(23) of this q-Fourier transform is an eigenfunction of the following 'moment" 
and 'position' operators: 

p=o 

P = (/I + q)  q-l-N + i J m  (aq-" - q-Na+) 
(27) 

Q = (p++)q-l-" - d L G i j ( a q - N + q - N a + )  
namely 

Q,&(s, p )  = q - ' K ( S .  p )  

p*F,[m) = F q t 4 - P V m  

~A(s ,  p )  = q-'Ki(S, P) . (28) 

(29) 
are analogues of the well known properties of the classical Fourier transform (cf [19]). In 
view of (6) in the limit q + 1- we get one of the 'discrete Fourier transforms' considered 
in [181. 

Similarly, with the aid of the bilinear generating function (22) and the orthogonality 
property of the Wall polynomials [14], which are dual to the polynomials (3, one can obtain 
the biorthogonaliry relation 

Equations 
5 -1 F,-'[P,Vl(S) = 4- Fq [Vl(S) 

with 

and 

for the 3i+yrarional functions of the form 

V"(S) = Un(S)lt,+t2 [It2 = p1p2. 

These functions are self-dual. They belong to classical biorthogonal rational func- 
tions [20,211. 

We have considered here. the explicit form of q-boson operators which satisfy the 
commutation rule (10) when 0 < q < 1. The case q > 1 is also interesting. It leads 
to another family of the Al-Salam and Carlitz polynomials [Z]. 

F a  the models of the q-oscillator under discussion one can readily Consmct dynamical 
symmehy group SU,(l, 1) [41 and write explicitly irreducible representations I j ,  m) ,  = 
@j+m(~) @j-m(~') of the group SUq(2) [1,21. 
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